SEJARAH BILANGAN
Gambaran Sejarah Purbakala dari Matematika
Pada mulanya di zaman purbakala banyak bangsa-bangsa
yang bermukim sepanjang sungai-sungai besar. Bangsa Mesir sepanjang sungai Nil
di Afrika, bangsa Babilonia sepanjang sungai Tigris dan Eulfrat, bangsa Hindu
sepanjang sungai Indus dan Gangga, bangsa Cina sepanjang sungai sepanjang
sungai Huang Ho dan Yang Tze. Bangsa-bangsa itu memerlukan keterampilan untuk
mengendalikan banjir, mengeringkan rawa-rawa, membuat irigasi untuk mengolah tanah
sepanjang sungai menjadi daerah pertanian untuk itu diperlukan pengetahuan
praktis, yaitu pengetahuan teknik dan
matematika bersama-sama.
Sejarah menunjukkan bahwa permulaan Matematika berasal
dari bangsa yang bermukim sepanjang aliran sungai tersebut. Mereka memerlukan
perhitungan, penanggalan yang bisa dipakai sesuai dengan perubahan musim.
Diperlukan alat-alat pengukur untuk mengukur persil-persil tanah yang dimiliki.
Peningkatan peradaban memerlukan cara menilai kegiatan perdagangan, keuangan
dan pemungutan pajak. Untuk keperluan praktis itu diperlukan bilangan-bilangan.
Sejarah Macam-macam Bilangan
sejarah bilangan dapat kita mulai
dengan bilangan Asli. Bilangan Asli merupakan bilangan yang pertama kali
dikenal manusia. Hal ini karena secara alamiah manusia akan melihat berbagai
benda/objek dan kemudian untuk keperluan tertentu mereka harus menghitungnya.
Mereka memiliki, uang, kambing, anak, pohon, saudara, dan lain-lain. Untuk
menghitung benda-benda tersebut bilangan yang digunakan adalah bilangan Asli.
Tentu saja mereka tidak menyadari bahwa bilangan yang mereka gunakan untuk
menghitung tersebut adalah bilangan Asli. Penamaan tersebut dilakukan setelah
jaman modern untuk keperluan pengembangan ilmu pengetahuan. Dengan demikian
kita dapat mendefinisikan bahwa bilangan asli adalah bilangan yang digunakan
untuk menghitung. Notasi himpunan bilangan asli adalah ℕ. Anggota
bilangan asli adalah N={1,2,3,…}.
Bilangan asli yang sudah dikenal tentu harus dilengkapi dengan suatu aturan untuk mengoperasikan bilangan tersebut. Operasi tersebut adalah penjumlahan, pengurangan, perkalian, dan pembagian. Kita sudah mengetahui bahwa bilangan asli bersifat tertutup terhadap penjumlahan. Artinya, penjumlahan dua bilangan asli akan menghasilkan bilangan asli. Tetapi tidak demikian dengan pengurangan. Kita akan mendapati bahwa jika sebuah bilangan asli dikurangi dengan bilangan asli hasilnya belum tentu bilangan asli. Sebagai contoh, 5 – 5 = 0. Jelas bahwa bukan anggota bilangan asli. Oleh karena itu, sistem bilangan asli harus diperluas dengan menyertakan 0 sebagai anggota. Perluasan ini kemudian dikenal sebagai bilangan Cacah.
Bilangan nol merupakan salah satu penemuan yang sangat penting. Sebelum ada bilangan nol, menuliskan bilangan-bilangan yang besar sangat sulit. Bahkan beberapa bilangan memiliki notasi yang sama (untuk lebih lengkap, silakan baca buku Berhitung Sejarah dan Pengembangannya yang ditulis oleh Dali S. Naga). Dengan adanya bilangan nol, penulisan bilangan-bilangan yang besar pun menjadi mudah. Bilangan nol pertama kali digunakan di China dan India, tetapi kemudian dipopulerkan oleh Bangsa Arab pada era keemasan Islam.
Perkembangan selanjutnya, bilangan Cacah pun ternyata tidak dapat sepenuhnya merepresentasikan objek dalam dunia nyata. Dalam dunia nyata ada orang yang memiliki uang, ada orang yang tidak memiliki uang, dan bahkan ada orang yang memiliki utang. Keadaan pertama dapat kita tulis dengan bilangan asli, sedangkan keadaan kedua bisa kita tulis dengan bilangan 0. Bagaimana dengan keadan yang ketiga jika yang menjadi kerangka acuan adalah keberadaan uang. Hal ini akan membawa kita pada perluasan sistem bilangan cacah menjadi menjadi bilangan bulat.
Perluasan bilangan bulat dapat juga dijelaskan dengan operasi pada dua bilangan cacah. Dengan operasi pengurangan, ternyata diketahui bahwa jika dua bilangan cacah dikurangkan maka hasilnya belum tentu bilangan cacah. Sebagai contoh, 6 – 4 = 2 dan 2 masih merupakan bilangan cacah, tetapi 4 – 6 tidak ada interpretasinya dalam bilangan cacah. Selanjutnya digunakan bilangan negatif untuk menyatakan hasil 4 – 6. Dengan demikian, karena 4 – 6 merupakan kebalikan dari , maka 4 – 6 = -2. Gabungan bilangan cacah dengan bilangan negatif ini yang kemudian membentuk bilangan bulat.
Notasi himpunan bilangan bulat adalah ℤ, dan anggota bilangan bulat adalah
Bilangan asli yang sudah dikenal tentu harus dilengkapi dengan suatu aturan untuk mengoperasikan bilangan tersebut. Operasi tersebut adalah penjumlahan, pengurangan, perkalian, dan pembagian. Kita sudah mengetahui bahwa bilangan asli bersifat tertutup terhadap penjumlahan. Artinya, penjumlahan dua bilangan asli akan menghasilkan bilangan asli. Tetapi tidak demikian dengan pengurangan. Kita akan mendapati bahwa jika sebuah bilangan asli dikurangi dengan bilangan asli hasilnya belum tentu bilangan asli. Sebagai contoh, 5 – 5 = 0. Jelas bahwa bukan anggota bilangan asli. Oleh karena itu, sistem bilangan asli harus diperluas dengan menyertakan 0 sebagai anggota. Perluasan ini kemudian dikenal sebagai bilangan Cacah.
Bilangan nol merupakan salah satu penemuan yang sangat penting. Sebelum ada bilangan nol, menuliskan bilangan-bilangan yang besar sangat sulit. Bahkan beberapa bilangan memiliki notasi yang sama (untuk lebih lengkap, silakan baca buku Berhitung Sejarah dan Pengembangannya yang ditulis oleh Dali S. Naga). Dengan adanya bilangan nol, penulisan bilangan-bilangan yang besar pun menjadi mudah. Bilangan nol pertama kali digunakan di China dan India, tetapi kemudian dipopulerkan oleh Bangsa Arab pada era keemasan Islam.
Perkembangan selanjutnya, bilangan Cacah pun ternyata tidak dapat sepenuhnya merepresentasikan objek dalam dunia nyata. Dalam dunia nyata ada orang yang memiliki uang, ada orang yang tidak memiliki uang, dan bahkan ada orang yang memiliki utang. Keadaan pertama dapat kita tulis dengan bilangan asli, sedangkan keadaan kedua bisa kita tulis dengan bilangan 0. Bagaimana dengan keadan yang ketiga jika yang menjadi kerangka acuan adalah keberadaan uang. Hal ini akan membawa kita pada perluasan sistem bilangan cacah menjadi menjadi bilangan bulat.
Perluasan bilangan bulat dapat juga dijelaskan dengan operasi pada dua bilangan cacah. Dengan operasi pengurangan, ternyata diketahui bahwa jika dua bilangan cacah dikurangkan maka hasilnya belum tentu bilangan cacah. Sebagai contoh, 6 – 4 = 2 dan 2 masih merupakan bilangan cacah, tetapi 4 – 6 tidak ada interpretasinya dalam bilangan cacah. Selanjutnya digunakan bilangan negatif untuk menyatakan hasil 4 – 6. Dengan demikian, karena 4 – 6 merupakan kebalikan dari , maka 4 – 6 = -2. Gabungan bilangan cacah dengan bilangan negatif ini yang kemudian membentuk bilangan bulat.
Notasi himpunan bilangan bulat adalah ℤ, dan anggota bilangan bulat adalah
Z={…,-3,-2,-1,0,1,2,3,…}.
Perhatikan bahwa -2 tidak hanya dihasilkan dari 4-6 , tetapi dapat juga dihasilkan dari 5 – 7, 10 – 12, 20 – 22 dan masih banyak lagi. Berdasarkan hal tersebut, setiap bilangan bulat mewakili suatu hasil pengurangan dalam cacah. Sebagai contoh, bilangan 2 mewakili hasil-hasil dari {2 – 0, 3 – 1, 4 – 2, …}. Bilangan -3 mewakili hasil-hasil dari
Perhatikan bahwa -2 tidak hanya dihasilkan dari 4-6 , tetapi dapat juga dihasilkan dari 5 – 7, 10 – 12, 20 – 22 dan masih banyak lagi. Berdasarkan hal tersebut, setiap bilangan bulat mewakili suatu hasil pengurangan dalam cacah. Sebagai contoh, bilangan 2 mewakili hasil-hasil dari {2 – 0, 3 – 1, 4 – 2, …}. Bilangan -3 mewakili hasil-hasil dari
{0 – 3, 2 – 5, 7 – 10, …}. Hal ini
berarti anggota himpunan bilangan bulat adalah hasil operasi pengurangan pada
bilangan asli.
Bilangan bulat yang disertai dengan operasi penjumlahan dan perkalian membentuk struktur tertentu dalam matematika. Struktur yang dimiliki bilangan bulat adalah, terhadap operasi penjumlahan, sistem bilangan bulat membentuk grup yang komutatif (grup abelian). Hal ini berarti terhadap penjumlahan bilangan bulat bersifat tertutup, asosiatif, memiliki unsur identitas, memiliki invers (lawan) dan komutatif,. Terhadap perkalian, bilangan bulat memiliki sifat, tertutup, komutatif, asosiatif, dan mempunyai unsur identitas. Dengan demikian sistem bilangan bulat memiliki sifat yang lebih lengkap daripada sistem bilangan sebelumnya.
Selanjutnya, terhadap operasi pembagian, ternyata bilangan bulat tidak bersifat tertutup. Dalam kehidupan sehari-hari kita sering harus membagi suatu objek menjadi beberapa bagian. Setelah dibagi hasilnya bisa utuh bisa juga tidak utuh. Sebagai contoh, jika kita memiliki 10 apel kemudian akan dibagikan kepada 5 anak, maka masing-masing anak akan mendapat 2 apel (masing-masing apel masih utuh). Tetapi jika 10 apel tersebut akan dibagikan kepada 20 anak, maka setiap anak mendapat setengah apel. Tidak ada bilangan bulat yang dapat digunakan untuk menyatakan hasil tersebut. Oleh karena itu, sistem bilangan diperluas.
Bilangan bulat yang disertai dengan operasi penjumlahan dan perkalian membentuk struktur tertentu dalam matematika. Struktur yang dimiliki bilangan bulat adalah, terhadap operasi penjumlahan, sistem bilangan bulat membentuk grup yang komutatif (grup abelian). Hal ini berarti terhadap penjumlahan bilangan bulat bersifat tertutup, asosiatif, memiliki unsur identitas, memiliki invers (lawan) dan komutatif,. Terhadap perkalian, bilangan bulat memiliki sifat, tertutup, komutatif, asosiatif, dan mempunyai unsur identitas. Dengan demikian sistem bilangan bulat memiliki sifat yang lebih lengkap daripada sistem bilangan sebelumnya.
Selanjutnya, terhadap operasi pembagian, ternyata bilangan bulat tidak bersifat tertutup. Dalam kehidupan sehari-hari kita sering harus membagi suatu objek menjadi beberapa bagian. Setelah dibagi hasilnya bisa utuh bisa juga tidak utuh. Sebagai contoh, jika kita memiliki 10 apel kemudian akan dibagikan kepada 5 anak, maka masing-masing anak akan mendapat 2 apel (masing-masing apel masih utuh). Tetapi jika 10 apel tersebut akan dibagikan kepada 20 anak, maka setiap anak mendapat setengah apel. Tidak ada bilangan bulat yang dapat digunakan untuk menyatakan hasil tersebut. Oleh karena itu, sistem bilangan diperluas.
Perluasan dari sistem bilangan bulat
tersebut adalah sistem bilangan rasional. Bilangan rasional didefinisikan
sebagai bilangan yang dapat ditulis sebagai dengan m dan n bilangan bulat dan
n≠0. Dengan perluasan sistem bilangan ini, maka persoalan tentang pembagian
dapat diselesaikan. Jika sistem bilangan bulat membentuk struktur grup abelian
terhadap operasi penjumlahan, maka sistem bilangan rasional membentuk lapangan
(Field).
Penemu Teori
Bilangan
Tokoh satu
ini sangat terkenal sumbangsihnya dalam bidang matematika, fisika dan juga di
bidang astronomi. Dia layak disejajarkan dengan Newton dan juga Albert Einstein.
Sang jenius ini bernama Johann Carl Friedrich Gauss yang dilahirkan di
Braunschweig, pada tanggal 30 April 1777 dan wafat di Göttingen, 23 Februari
1855 pada umurnya yang ke 77 tahun. Dia adalah matematikawan, astronom, dan
fisikawan Jerman yang memberikan beragam kontribusi; ia dipandang sebagai salah
satu matematikawan terbesar sepanjang masa selain Archimedes dan Isaac Newton.
Dilahirkan di Braunschweig, Jerman, saat umurnya belum genap 3 tahun, ia telah
mampu mengoreksi kesalahan daftar gaji tukang batu ayahnya.
Profil Carl Friedrich Gauss
Menurut sebuah cerita, pada umur 10 tahun, ia membuat gurunya terkagum-kagum dengan memberikan rumus untuk menghitung jumlah suatu deret aritmatika berupa penghitungan deret 1+2+3+...+100. Meski cerita ini hampir sepenuhnya benar, soal yang
diberikan gurunya sebenarnya lebih sulit dari itu. Sebagai salah satu matematikawan terbesar sepanjang masa, selain Archimedes dan Isaac Newton, Gauss melakukan penelitiannya di observatorium astronomi di gottingen, kota kecil di jantung jerman. Yang dengan segera menciptakan tradisi matematis yang membuat Gottingen dan universitasnya menjadi pusat matematika dunia.
Kontribusi Carl Friedrich Gauss dalam bidang sains dan ilmu pengetahuan
Gauss memberikan beragam kontribusi yang variatif pada bidang matematika. Bidang analisis dan geometri mengandung banyak sekali sumbangan-sumbangan pikiran Gauss, ide geometri non Euclidis ia garap pada 1797. Tahun 1799 menyumbangkan tesis doktornya mengenai Teorema Dasar Aljabar. Pada 1800 berhasil menciptakan metode kuadrat terkecil .
Dan pada 1801 berhasil menjawab pertanyaan yang berusia 2000 tahun dengan membuat polygon 17 sisi memakai penggaris dan kompas. Di tahun ini juga menerbitkan Disquisitiones Arithmeticae, sebuah karya klasik tentang teori bilangan yang paling berpengaruh sepanjang masa. Gauss menghabiskan hampir seluruh hidupnya di Gottingen dan meninggal di sana juga.
Gauss ialah ilmuwan dalam berbagai bidang: matematika, fisika, dan astronomi. Bidang analisis dan geometri menyumbang banyak sekali sumbangan-sumbangan pikiran Gauss dalam matematika. Kalkulus (termasuk limit) ialah salah satu bidang analisis yang juga menarik perhatiannya.
Sumber :
http://asbarsalim009.blogspot.com/2014/12/sejarah-bilangan.html
http://schipaey.blogspot.com/2015/08/sejarah-jenis-jenis-dan-penemu-bilangan.html
No comments:
Post a Comment